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Analytical solutions are obtained in various formulations of the coupled problem of stability for a rectangular plate of a shape- 
memory alloy undergoing a direct thermoelastic phase transition when compressive loads are applied. It is shown that the critical 
loads corresponding to the coupled formulation of the problem may be several times less than those obtained when solving the 
uncoupled problem. A non-convex domain of stability is obtained in the plane of the applied loads. © 2004 Elsevier Ltd. All 
rights reserved. 

Shape-memory alloys (SMAs) possess unique mechanical properties because of the thermoelastic phase 
transitions that take place in them. When such an alloy is cooled, a direct phase transition occurs in it 
in an appropriate temperature interval: from the austenite phase to the martensite phase, accompanied 
by a decrease in Young's modulus (down to as much as one third in titanium nickelide). If the direct 
transition takes place under mechanical stresses, the SMA will also experience, besides an elastic strain, 
a phase strain exceeding the elastic strain by a considerable factor, corresponding to the same stresses. 
The decrease in elastic stiffness and increase in the deformative property of the SMA in a direct transition 
indicates the danger of a loss of stability when the phase transition occurs as a result of the application 
of compressive stresses. 

The stability of the equilibrium of the elements of a SMA was investigated in [1-6]. Experiments 
have established [5] that samples in the form of thin strips of titanium nickelide, which lose isothermal 
stability neither in the austenite nor in the martensite state, may lose stability under the same load in 
a transition from the first state to the second due to cooling. The critical stability-loss loads in a direct 
martensite transition proved to be several times less than the critical loads for loss of isothermal stability 
in the least rigid martensite phase state, so that the observed phenomenon cannot be attributed merely 
to a decrease in the moduli of elasticity under a direct martensite transition. 

For a qualitative description of the experimentally observed phenomenon, analytical solutions of the 
stability problem are obtained in this paper for a rectangular SMA plate undergoing direct martensitic 
transition under unilateral and bilateral uniform loading. The problem is solved in different formulations, 
for the purpose of choosing a solution that yields the lowest critical loads. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a rectangular plate of constant thickness h and sides a and b along the axes of a Cartesian 
system of coordinates Oxl and Ox2 situated in the middle plane of the plate (the origin O of the system 
of coordinates coincides with one of the nodes of the plate). The plate is loaded in the austenite phase 
state by constant normal surface forces Pla and P22, acting in the directions of the axes Ox~ and Ox2, 
respectively (a compressive load is considered positive), uniformly distributed over opposite edges; the 
plate is cooled slowly from the start temperature to the finish temperature of the direct martensitic 
transition. At any given instant of time, all points of the plate are at the same temperature. It is required 
to find the minimum loads at which the plate may have twisted equilibrium shapes during the direct 
transition process, in addition to its trivial flat shape. The investigation will be carried out within the 
limits of small-strain theory and the Kirchhoff-Love hypothesis (for total strains). The problem of 
stability will be solved in a linearized formulation. 
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A simplified version of the system of constitutive relations proposed in [7-9] for shape-memory alloys 
(SMAs) will be used. For the case of direct transition in a plane stressed state, this system reduces to 
the following 

Eij = E~I)"I - E:I 2) (1.1) 

a£11- (2) = \( 20H - 02230(1 ) + a0e{ 2))dq, ae22-(2) = \( 2022-~1130(1 ) + a^ ~(2)'~ "u,~22 )aq 

~12 k,O(1) 

(1.2) 

• ( n M ,  + k o  i - T'] 
q = sln~.~ 79/1_M 2 j 

M 2 + k o  i < T < M 1 + k o  i, 

~[1- ( M, + ko,- T']~ 
or q = cos[x M I _ M  2 )_] 

kdo i - d T  > 0 

(1.3) 

Jl~2 2 
Oi = 11 + O22--Ol lO22 + 30~2 (1.4) 

E ( l )  011 - It(q)022 ~(l) 022 - It(q)Oll (1) - 012 (1.5) 
11 = E(q) ' 1522 = E(q)  ' El2 2G(q) 

1 _ q + l - q  1 = q + ~ - 2 '  It(q)  - E (q )  1 (1.6) 
E(q) E 1 E 2 " G(q) G 1 2G(q) 

where eij, ~I *) and ~I 2) are the total, elastic and phase strains, oij and oi are the stress tensor and intensity, 
• . , 7  ~/  . 

q is the internal state variable, treated as the relative volume of the martensite phase, for which the 
first [9] or second [10] relation of (1.3) is used, T is the variable temperature, and 341 and M2 are the 
start and finish of the direct martensitic transition in the stress-flee material• The third and fourth 
relations in (1.3) are the conditions for the realization of a direct martensitic transition, E(q); G(q) and 
bt(q) are the Young's modulus, the shear modulus and Poisson's ratio of the SMA, whose dependence 
on the phase composition parameter is defined by formulae (1.6), which are obtained by hypothesizing 
additivity of the Gibb's potential and Reuss averaging [11] the subscripts 1 and 2 indicate the values 
of the moduli for the martensite and austenite states, respectively), and a0, o(1) and k are the material 
constant for the SMA. 

According to Eqs (1.1) and (1.2), neither the volume effect of the martensite transition reaction nor 
pure temperature strains are taken into consideration when solving the problem; it is moreover obvious 
from Eqs (1.3) and (1.4) that the influence of transverse shear stresses is ignored when calculating of 
the start and finish temperatures of the direct transition. 

Suppose we can set k = 0 in Eqs (1•3). The boundary-value problems arising on the basis of the 
resulting system may be classified, following the terminology adopted in [11], as unconnected, since in 
that case the distribution of the phase composition parameter over the material may be found 
independently of solving the problem of determining the stress-strain state. On the assumption that 
the transition to the adjacent equilibrium shape takes place much faster than the cooling process, and 
the falling temperature does not experience perturbations (ST = 0), one can arrive at a "fixed phase 
composition" conception [6], following which it may be assumed that, when a transition to the adjacent 
equilibrium shape occurs, the phase composition does not change (&/ = 0). In the unconnected 
formuIation, system (1.1)-(1.6) is used to analyse the unperturbed state, but in order to formulate the 
linearized equations of stability one uses, instead of Eqs (1.2) and (1.3), the relations 

o (2) 
8q = 0, oeij = 0 (1.7) 

The case k ~ 0 corresponds to the connected statement of the stability problem. Here, even if 5T = 0, 
transition to the adjacent equilibrium shape owing to variation of the stresses may be accompanied by 
additional phase transitions and the parameter q must be varied when the equations for the perturbed 
state are written down ("continuing phase transition" conception [6]). 
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The condition for realization of a phase transition according to the last relation of (1.3) is the validity 
of the inequality 

k ~  i - ST > 0 (1.8) 

In the case of buckling under a constant external load which experiences no perturbations, the 
compressive stresses may decrease near the convex surface of the plate and the stress intensity may 
decrease. If at the same time the temperature also does not experience any perturbations (ST = 0), 
condition (1.8) is violated. As a result this (hitherto unknown) part of the plate will not experience an 
additional phase transition when buckling occurs (the "elastic unloading" conception). Analysing the 
perturbed state for this part of the plate, one will use, as in the unconnected setting, relations (1.7), 
rather than Eqs (1.2) and (1.3), while for the other points of the cross-section both the preliminary 
stressed state and the transition to the adjacent equilibrium shape will be analysed using the complete 
system (1.1)-(1.6). 

Suppose the acting load and/or temperature may experience small perturbations. It has been shown 
[6] that in the case of a rod of SMA there will always be infinitesimal variations of the load under which 
buckling will be accompanied by an increase in the stress intensity at all points of the cross-section. As 
a result, the whole cross-section will undergo an additional phase transition. The hypothesis that such 
perturbations exist and are realized corresponds to Shanley's conception in the theory of the stability 
of elastoplastic bodies [12, 13]; it may therefore be termed briefly the "continuing load" conception. 

In experiments [5], the critical stability-loss loads in a direct martensite transition turned out to be 
extraordinarily low, and therefore it is interesting to find a formulation of the stability problem that 
will yield a decrease in the value of the critical loads. 

2. L I N E A R I Z E D  STABILITY EQUATIONS 

To solve the stability problem one first has to find the unperturbed stress-strain and phase states. 
Following the general positions that have been established for the boundary-value problems of direct 
transition in SMAs [14, 15], one can show that the unperturbed stresses in a direct transition conserve 
the constant values 

611 = --P11'  (~22 = - P 2 2 ,  (Y12 = 0 (2.1) 

In that case, integrating Eqs (1.2) taking the zero initial data into account, one can find the values of 
the phase strains in the unperturbed state 

(2) 2 ( Y i i  --  6 . .  
eli  (q) = JJ(exp(a0q ) -  1), eClat(q) = 0 

3~(1)a0 
(2.2) 

Here and below, there is no summation over repeated subscripts i, j = 1, 2, i , j .  
The unperturbed values ofq are given by formulae (1.3), (1.4) and (2.1) and will be the same at each 

instant of time for all points of the plate. 
The equations for the perturbed state are obtained from the kinematic part of the Kirchhoff-Love 

hypotheses, which by virtue of (1.1) and (1.5), may be written as 

0 (~ii -- g ( q ) 6 1 j  + e(2) o (Y12 _(2) 
Eii = e i i - - X 3 K i i  -- ~ ii ' El2 ---- e12--X31(12 -- 2G(q)+El2 (2.3) 

where x3 is the coordinate orthogonal to the plate, t °- is the strain of the middle plane of the plate, and 
~:0 are the curvatures, for which the following linear relations are used 

"Kll = W,11, 1£22 = W,22, KI2 = W,12 (2.4) 

where w is the deflection of the middle plane of the plate, and the symbols following the comma in the 
subscript indicate the coordinates with respect to which the partial derivative is evaluated. In the 
discussion in this section, the whole set of variables mentioned previously are allowed to vary: w, q, Pll 
P22 and T. 

Taking variations on both sides of Eqs (2.3), and considering the unperturbed values of the phase 
strains (2.2) and formulae (1.6), we obtain 
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8EOi i _ x38Kii  = 8(Yii -- It(q)gOjj + gii(q)gq, 
E ( q )  

2t~ii - (~jj 
gii(q) = t~uAl - ~jjA2 + ff'~l~ exp(a°q) 

~a12 
8e02--x3~K12 --" 2G(q) 

(2.5) 

(1  1 )  A2 = (gEl ItE2 ) A1 El E2 

Here and below, all quantities not marked as variations correspond to the unperturbed state, and those 
with the variation symbol correspond to their variation on changing to the adjacent equilibrium shape. 

For a variation of the relative volume of the martensite phase q in formulae (1.3), one can obtain 
the relation 

8q = I l t ( q ) ( k * ~ i +  ~t)U+ 

M a - T  k* = k U+= ~1 if k * ~ i + S t > O  (2.6) 
t = M I  _ M"-----'~' M 1 - M-""~' [ 0  i f  k*~(~ i + ~t  <- 0 

If the first formula of (1.3) is being used, the quantity g(q) is evaluated by the formula g(q) = 
n ' ( f -  q2/2; in the case of the second it is evaluated by the formula ~(q) = r t q ~  - q). 

The variation of the stress intensity (1.4) (taking the absence of shear stresses in unperturbed 
compression into consideration) is computed by the formula 

1 (Y ~(~i < I (  11 - C22"~e" = ~--)O1~11 + (1~22 - ~-~)~O221 (2.7) 

Solving Eq. (2.5) for the stress variations, we obtain 

= 0 
~(~ii ~(-~. [euZjj + ejjzij], ~(~12 = 2G(q)(~E12- X3~K12) 

1 - g (q)  

eu = 5e°i - x38~:ii - gi i(q)~(q) U+8t 

I + ~jj(q) U+ It(q) - ~q(q) U+ 
zjj = l+~(q)U+ zij l+~(q)U+ 

gu(q)E(q)lll(q)k*(o ojj~ (2,8) 

gu(q)E(q) l l l (q)k*(o  {Jii~ 
~ij(q) = ~ k. jj - "~J 

~(q) = ~ll(q) + ~22(q) + It(q)(~12(q) + ~21(q)) 
1 - g2(q) 

Equations (2.8) hold for those points of the plate at which, on changing to the adjacent equilibrium 
shape, an additional phase transition occurs. For points where N/= 0, one should put ~(q) = 0 in (2.8). 

Using the stress variations (2.8), one can form the variations of the internal moments and forces per 
unit length. 

hi2 hi2 
~Mij : I ~(Yijx3dx3' ~giJ = I ~ i jdx3  (2.9) 

-h/2 -hi2 

The equilibrium equations for the perturbed state can be written in the form [16]. 

~MI1, 11 + 2~M12, 12 + ~M22,22 = h(Oll~W,ll + O22~w,22) (2.10) 
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SNl l ,  1 --F 8N12,2 = SX, SN12, 1 + SN22,2 = 5Y (2.11) 

where 8X and 5Y are the variation of the external surface forces, which may be non-zero even though 
these forces themselves are assumed to vanish in the unperturbed state. 

The equation of compatibility of the variations of the strains 6e11, 22 + Se22,11 = 2Se12,12, taking into 
account representations (2.3), is equivalent to the same equation but for variations of the strains in the 
middle plane 

o o o 
SE11,22+S1"7,22,11 = 2SE12,12 (2.12) 

3. S O L U T I O N  OF THE U N C O U P L E D  P R O B L E M  

In the case of the solution of the uncoupled stability problem with ST = 0, the condition Sq = 0 holds. 
Setting ~(q) = 0 in (2.8) for all points of the plate and using the first formula of (2.9), we have 

SMii = -D(q)(SKii + g(q)SKjj), SM12 = -D(q)(1 - g ( q ) ) S K 1 2  

D(q) - E(q)h3 (3.1) 

12(1 - ~l,(q) 2) 

where D(q) is the cylindrical stiffness of the plate, which takes into account the variability of the modulus 
of elasticity. 

Substituting formulae (3.1) into the equilibrium equation (2.10), taking (2.4) into account, we obtain 
the stability equation for elastic plates with a coefficient depending on the phase composition parameter 

h 
A A ~ w  - n--~77-{~(O'll~W,ll + (Y22Sw22) = 0 

/-/to/! 

For a plate all of whose edges are freely supported, using the representation of the deflection in double 
trigonometric series 

• ( m s  ~ .  (n n  ) 
8w(x,, x2) : Wm,~Sint---d--Xl)Slnt--~-x2) (3.2) 

we obtain a formula 

P'I(~) 2+p22(;) 2 = O(q)rc2r(m)Z+(n')2]2h L\aJ \T,) J (3.3) 

for determining the critical loads Pll and P22, which is identical with the well-known solution for an 
elastic plate but taking into account the variability of the cylindrical stiffness. Since at values of the 
constants of elasticity characteristic for SMAs the cylindrical stiffness decreases as q increases, that is, 
when there is direct transition into the martensite state, the minimum value of the critical loads (3.3) 
when the plate cools and with the corresponding direct transition, within the framework of the "fixed 
phase composition" conception, is obtained at q = 1. These loads are equal to the critical stresses of 
isothermal loss of stability in the martensite phase state. According to experimental data [5], the critical 
stability-loss loads in a direct martensite transition may be several times less than the same loads for 
isothermal stability loss in the martensite phase state. Thus, the experimental data contradict the "fixed 
phase composition" concept. 

4. S O L U T I O N  OF THE C O U P L E D  P R O B L E M  W I T H I N  
THE F R A M E W O R K  OF THE " C O N T I N U I N G  LOAD" CONCEPT 

Suppose the admissible perturbations include not only deflection but also external effects (load and 
temperature), and moreover that, by suitable choice of arbitrary small variations of these quantities 
~P11, ~P22 and 6t, one can guarantee satisfaction of the condition k*5(yi + 8t > 0 in the entire domain 
being considered. As is obvious from (2.6), an additional phase transition will take place in that case 
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at each point of the plate. Collecting the internal moments according to formulae (2.9), using the 
appropriate expressions for the variations of the stresses (2.8), and noting that under these conditions 
U+ = 1 in the case under consideration, it can be shown that 

h/2 
= DKii( 1 + ~jj) + ~Cjj(B - ~ij) E gt(gii + ggjj) 

Mii - 1 + { - 1 - g2 1 + ~ f 8tx3dx3 (4.1) 
-hi2 

where the expression for M12 does not change compared with (3.1). For brevity, the notation for the 
argument q in functions that depend on it are omitted in these expressions. Substituting the expression 
for the moments (4.1) into the equilibrium equation (2.10) we obtain an inhomogeneous partial 
differential equation. However, the inhomogeneous terms do not affect the critical stability-loss loads 
and may therefore be omitted in a stability analysis. The corresponding homogeneous equation is 

h 
A l l ( q ) ~ w , 1 1 1 1  + 2 A 1 2 ( q ) ~ w , l 1 2 2  + A 2 2 ( q ) ~ w , 2 2 2 2  - D---~((Yll~W,ll -I" (Y22~w,22) --- 0 (4.2) 

where we have introduced the notation 

1 + {jj(q) 2 g ( q )  - {12(q)  - {21(q)  
Au(q)= l + ~ ( q ) '  Alz(q) = 1 - g ( q ) +  2( l+~(q) )  (4.3) 

To sum up, for a plate freely supported at all edges, substitution of the expression (3.2) into Eq. (4.2) 
yields the relation 

---- 4 :m-xZ:n.Q 
Pll(m) 2+ P22(b) 2 D(q)g2[All(q)(m) + 2A12(q)~a ) ~b) + A22(q)(;) 4] (4.4) 

which may be used, taking Eqs (4.3), (2.8) and (2.1) into Consideration, to determine the critical loads 
Pll andp12. 

For a plate with freely supported transverse edges and free longitudinal edges, assuming that the 
variation of the deflection is independent of x2 and that the constants of integration with respect to Xl 
equal zero, one obtains the following equality instead of Eq. (4.2) 

h Au(q)Swu - D---~O'll~W -- 0 (4.5) 

Substituting into this equation the formula for the variation of the deflection 

WmSi.( Xm) 
we obtain an expression for the critical load 

(mg']ZO(q)All(q) 
Pll = \--~- j (4.6) 

which in this case is a minimum when m = 1. 

5. SOLUTION OF THE COUPLED STABILITY PROBLEM 
WITHIN THE FRAMEWORK OF 

THE "ELASTIC UNLOADING"  CONCEPTION 

In this case, because of unloading, the part of the plate adjoining its convex surface in the buckling 
process will no longer undergo a direct phase transition. Let x3° be the transverse coordinate of the 
boundary of the zone of additional phase transition, whose value generally depends on the coordinates 
xl and x2, which complicates an analytical solution. It can be proved, however, that if the variations of 
the temperature and the normal internal forces in the plate vanish. 
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8Nll = 8N22 = 0 (5.1) 

~St = 0 (5.2) 

then the coordinate x ° is the same for all points of the middle plane. 
Indeed, the variation of the stress intensity (2.7) must vanish on the required boundary of the phase 

transition. Writing down this condition, taking formulae (2.8) and (5.2) into consideration and also the 
fact the U+ = 0 on the boundary of the phase transition, we obtain 

(0-11- ~)(l~g~l + It(q )~}E~2) + (0"22- "~)( (~E02 + It(q )~E~l) = 
0 0"22 

= X3I(0-11- "~'-)(~Kll + It(q)i~K22) + (0-22--"~)(I~K22 + ]L(q)Kll)] 
(5.3) 

Assuming that the domain of the plate cross-section x 3 E [-h/2, x °] undergoes an additional phase 
transition, while the rest of the cross-section does not, one obtains the following expressions for the 
variations of the internal forces (2.9) 8Nll, 8N22 and 8N12 

(5.4) 1 (h 2 _ .  0.2"~[-(~Kii + It~Kjj)~ ~Kii~j j - ~Kjj~iJl 
[X3) )L -1 "~'~ I - 2 \ 4 - i -~-~ J 

8N12 = 2Gh~)e°2 

Multiplying equation (5.4) for 8Nll by ((511 - (522/2) and the equation for 8N22 by ((522 - o"11/2) and 
adding the results together, one arrives, via Eq. (5.3), at a relation which, together with conditions (5. l), 
enables one to find the required value of the coordinate x~ 

(5.5) 

By (5.5), the quantityx ° is indeed independent of xl and x2 on the assumption that (5.1) and (5.2) 
are true. 

Substituting expressions (2.8) into the first formula of (2.9) we obtain expressions for the variations 
of the internal moments 8Mll and 8M22, which contain terms with the variations both of the curvatures 
~1(11 and 8~22 and of the strains of the middle plane 6s°1 and 8s°2. Eliminating the latter using (5.1) and 
(5.4) and also using formula (5.5), one arrives, after some relatively simple but very cumbersome algebra, 
at the following expressions 

8Mi i= -D(q ) { [~  + (1 - -~--)-~-~ j~JJ'~8x°ls,u+[ - ~ +  (It + ~)-h~~ J ~KJJ l~ i j ' 8x~- ]  1 (5.6) 

The formula obtained for 8M12 is identical with (3.1). Substituting the latter, together with (5.6), into 
the equilibrium equation (2.1) we obtain the required differential equation, which is identical in form 
with (4.2) but has different coefficients: 

~JJ(q) + (1 ~JJ(q)') 8x° 
Aii(q) = ~ ,, - ~ ' ~ ) h - - ~  

Al2(q ) = 1 - It(q) - ~12(q) + ~21(q) (5.7) 
2{(q) 

~lI(q) + ~II(q)) 8x° 
I- It(q) + 2'~"('~" ")h-~) 

For a plate freely supported along all its edges, given representation (3.2) of the variation of the 
deflection, this equation implies formula (4.4), but with coefficients computed from formulae (5.7), and 
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this relation may be used, with due consideration of formulae (2.8) and (2.1), to determine the critical 
load parameters Pll and P22. 

It should be noted that assumptions (5.1), subject to which this solution has been found, do not 
contradict the boundary conditions for the forces at the ends of the plate if the variations of the normal 
forces at the ends vanish. In this case, therefore, what we have is a loss of stability at fixed normal external 
forces. 

It is also particularly noteworthy that in this solution the variation of the shearing force 8N12 does 
not vanish. Its value may be determined by using the first two formulae of (5.4), on the assumption that 
condition (5.1) is satisfied, to express the variations 8c°1 and 8~°2 in terms of the curvatures 8~11 and 
81£22 and the last equation of (5.4) to express the variation of the shear strain 8E72 in terms of 8N12, 
subsequently substituting these values into the compatibility equation (2.12) for the strains. The result 
is a formula for the second mixed derivative for a freely supported plate, taking (3.2) into account: 

- mnit 2 . (mit ~ . (nit "~ 
8N12,12(xl, x2) = 8Ul2mn---~-~-slnt---~xlJslnt--~-x2) 

in which we have introduced the notation 

8N12mn = 
G h x 3 a b  2 F. ,- )m 4 2 2 4 

l-Ix-" 2 ~- mnit w~"/tix~22 + ~ 2 1 L  -7+(la -ix2"m)ga-Tb ~n + (IX~ll + ~12)#'/ 

Consequently, the variation of the shearing force is given by the formula 

mrc nit (5.8) 

using which, one infers from the equilibrium equations (2.11) and from conditions (5.1) that the 
variations of the surface forces 8X and 8Y must be found from the formulae 

o.  nn (mit "~. (nn  ) 
8X(x 1, X 2) = -ODtl2mnTCOStTXl)SnltTx2) 

o .  m i t .  (mit ~ (nit "~ 
BY(x,. x2) : -o ,V12m°aS,ntTx,jcostT.2 ) 

(5.9) 

In addition, the variations of the shearing forces at opposite edges of the plate must not vanish: 

1 1 
8P12(0, X 2) = ~8N12mn(O , x2), 8p12(a, x2) = -~iSN12mn(a, x2) (5.10) 

1 1 
8P21(Xl, 0) = ~8N12mn(X I, 0), 8P21(Xl, b) = ~8N12mn(Xl, b) (5.11) 

As is obvious, all the quantities determined by formulae (5.8)-(5.1) have been found, apart from a 
small factor wren, from expression (3.2) for the variation of the deflection. Thus, the perturbations of 
the external shearing loads required to implement this solution are small. 

It should be noted that, for a plate with free longitudinal edges, formulae (5.5) and (5.7) hold provided 
that the variations of the external longitudinal loads vanish without any further assumptions. The 
equilibrium equations are satisfied at zero values of the variations of the shearing forces. 

6. LOSS OF STABILITY OF A BIAXIALLY LOADED 
SQUARE PLATE 

As an example illustrating the different approaches considered in this paper, let us investigate a square 
plate of SMA loaded at two pairs of opposite edges by constant surface loads Pll and P22 and under 
conditions of direct martensite transition. The dimensionless parameters of the material (corresponding 
to titanium nickelide with equal atomic content of nickel and titanium) are 
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Figure 1 shows the boundaries of the stability domains of such a plate. The axes measure the 
dimensionless critical loads P l = P 1 l/P* and P2 = P2JP*, where p* = 4D(1)n2/(hb 2) is the critical load 
of isothermal loss of stability of such a plate under uniaxial compression in the martensite state. The 
solution was obtained with the phase transition diagram approximated by formula (1.3). The polygonal 
line corresponds to the boundary of the stability domain obtained by analysis of Eq. (3.3), corresponding 
to the solution of the unconnected problem. The solid curve corresponds to the solution of the connected 
problem assuming the "continuing loading" hypothesis. The dashed curve corresponds to the solution 
of the connected problem, assuming the "elastic unloading" conception. 

As can be seen from Fig. 1, the least critical loads are obtained under the "continuing phase transition" 
and "continuing loading" hypotheses. This seems to be quite justified, since in this case the plate, owing 
to the additional phase transition at all its points, is most inclined to develop phase strains, i.e., it is 
most pliable. It should be noted that the boundaries of the stability domains for the last two approaches 
considered are not convex. 

According to Fig. 1, the critical loads determined using the different hypotheses for a square plate 
show the greatest discrepancy in the case of biaxial loading by identical loads: Pll  = P22 = P. In Fig. 2 
the dimensionless critical values ofpl  = p/p** are plotted versus the quantity 11 = a/h. Here the critical 
load is considered relative to the maximum loadp** of isothermal stability loss in the martensite state 
under equi-biaxial compression or, what is the same, relative to the minimum critical load obtained by 
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solving the problem in the unconnected formulation, which thus corresponds to the upper horizontal 
line Pl = 1. The solution of the connected problem, assuming the "elastic unloading" hypothesis, is 
represented by the dashed curve, and the solution assuming the "continuing unloading" conception is 
represented by the solid curve. As is clearly seen, the difference between the solutions is small for 
sufficiently thin plates; it increases as the relative thickness increases (as q decreases). The differences 
between the critical stability-loss loads in the direct transformation and the isothermal stability-loss loads 
in the least rigid martensite state, for fairly thick plates, may amount to several factors, in agreement 
with the experimental data [5]. 

It was never possible in the experiments in [5] to obtain a loss of stability in a direct transition at the 
last point of the interval of this transition, that is, at q = 1. The deviation from the rectilinear shape 
always took place at certain intermediate temperatures, considerably exceeding the temperature at the 
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end of the direct transition reaction. In Fig. 3 the minimum (with respect to m and n) dimensionless 
critical load parameter  P1 = P l J P *  is plotted versus the relative volume q of the martensite phase in 
the problem of stability loss for direct transition in biaxial compression by equal loads. Curve 1 
corresponds to the solution of the unconnected problem, curve 2 corresponds to the solution of the 
connected problem, assuming the "continuing loading" conception and with the phase transition diagram 
approximated by the second formula of (1.3) and curve 3 represents the solution of the same problem, 
but with the phase transition diagram approximated by the first formula of (1.3). As can be clearly seen, 
in the solution of the problem in the coupled statement, unlike the results for the uncoupled problem, 
the minimum of the critical load never corresponds to the value q = 1, that is, loss of stability occurs 
at an intermediate point of the direct transition, rather than at t he  ends; interval this also does not 
contradict the experimental data. The minima on the curves plotted in Fig. 3 and constructed for different 
approximations of the phase diagram are close together, though the curves themselves are far apart at 
q = 0. This difference is due to the fact that, by the second formula of (1.3), one has d q / d T  = 0 at 
T = Ms, that is, at q = 0, whereas according to the first formula of (1.3) the derivative will never vanish 
at the initial point of the interval of direct transition temperatures, but will have the maximum absolute 
value at the point. 

Figure 4 compares the solutions of the stability problem for a plate with free longitudinal sides, but 
freely supported transverse sides (4.6), and for a rod freely supported at both ends, assuming that the 
cross-sections have identical moments of inertia and that the plate and rod are of the same length. The 
solution of the stability problem for a rod is taken from [6]. In both cases the "continuing loading" 
conception is assumed and the second formula of (1.3) is used for the phase diagram. Critical loads, 
relative to the maximum load of isothermal stability loss for a strip in the martensite state, are plotted 
along the ordinate axis. The solid curves in Fig. 4 correspond to the plate and the dashed curves to the 
rod. Curve 1 are constructed for the solution of the uncoupled problem and curves 2 for the solution 
of the coupled problem. It is obvious that the relative difference between the critical stability loss loads 
for a plate and a rod, obtained when the coupled problem is solved, is markedly greater than that 
obtained for the uncoupled problem. 
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